On algebras satisfying the identity $(yx)x+x(xy)=2(xy)x$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On associative algebras satisfying the identity x 5 = 0

We study Kuzmin’s conjecture on the index of nilpotency for the variety N il5 of associative nil-algebras of degree 5. Due to Vaughan-Lee [11] the problem is reduced to that for k-generator N il5-superalgebras, where k ≤ 5. We confirm Kuzmin’s conjecture for 2-generator superalgebras proving that they are nilpotent of degree 15.

متن کامل

Associative Algebras Satisfying a Semigroup Identity

Denote by (R, ·) the multiplicative semigroup of an associative algebra R over an infinite field, and let (R, ◦) represent R when viewed as a semigroup via the circle operation x ◦ y = x + y + xy. In this paper we characterize the existence of an identity in these semigroups in terms of the Lie structure of R. Namely, we prove that the following conditions on R are equivalent: the semigroup (R,...

متن کامل

Representation Theory of Noetherian Hopf Algebras Satisfying a Polynomial Identity

A class of Noetherian Hopf algebras satisfying a polynomial identity is axiomatised and studied. This class includes group algebras of abelian-by-nite groups, nite dimensional restricted Lie algebras, and quantised enveloping algebras and quantised function algebras at roots of unity. Some common homological and representation-theoretic features of these algebras are described, with some indica...

متن کامل

Commutative Algebras Satisfying an Identity of Degree Four

In view of this theorem, the study of the structure of commutative algebras with unity element satisfying an identity of degree g 4 is immediately reduced to the study of algebras satisfying one of the identities (l)-(3). The first of these identities is well-known to be equivalent to power-associativity in a commutative algebra of characteristic not 2, 3, or 5 and has been studied extensively ...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1972

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1972-0288153-2